TestMigrationsInPy: A Dataset of Test Migrations
from Unittest to Pytest

Altino Alves, Andre Hora
Department of Computer Science, UFMG
Belo Horizonte, Brazil
{altinojunior, andrehora}@dcc.ufmg.br

Abstract—Unittest and pytest are the most popular testing
frameworks in Python. Overall, pytest provides some advantages,
including simpler assertion, reuse of fixtures, and interoperability.
Due to such benefits, multiple projects in the Python ecosystem
have migrated from unittest to pytest. To facilitate the migration,
pytest can also run unittest tests, thus, the migration can
happen gradually over time. However, the migration can be time-
consuming and take a long time to conclude. In this context,
projects would benefit from automated solutions to support the
migration process. In this paper, we propose TestMigrationsInPy,
a dataset of test migrations from unittest to pytest. TestMi-
grationsInPy contains 923 real-world migrations performed by
developers. Future research proposing novel solutions to migrate
frameworks in Python can rely on TestMigrationsInPy as a
ground truth. Moreover, as TestMigrationsInPy includes infor-
mation about the migration type (e.g., changes in assertions or
fixtures), our dataset enables novel solutions to be verified effec-
tively, for instance, from simpler assertion migrations to more
complex fixture migrations. TestMigrationsInPy is publicly avail-
able at: https://github.com/altinoalvesjunior/TestMigrationsInPy.

Index Terms—Software Testing, Framework Migration, LLMs,
Software Repository Mining, unittest, pytest

I. INTRODUCTION

Unittest [1] and pytest [2] are the most popular testing
frameworks in Python [3], [4]. Unittest belongs to the Python
standard library and pytest is a third-party testing framework.
In pytest, tests can be regular functions, while unittest tests
are contained in classes that inherit from TestCase. Con-
sequently, pytest tests tend to be less verbose than unittest
ones. Another difference is the assertions: unittest provides
self.assert* methods, while pytest allows developers to
use the regular assert statement for verifying expectations
and values. Overall, pytest provides some advantages com-
pared to unittest, including simpler assertion, reuse of fixtures,
and interoperability [2], [4].

Due to such benefits, multiple projects in the Python ecosys-
tem have migrated from unittest to pytest [4]. A prior study
found that 27% of top-100 most popular Python projects
migrated or were migrating to pytest [4]. Figure 1 presents
a migration from unittest to pytest in project Termgraph.! The
unittest self.assertEqual methods (red) are replaced
by assert statements in pytest (green). As the pytest test
becomes a function, the inheritance is not needed anymore.

Thttps://github.com/sgeisler/termgraph/commit/d5665248b7d596cabe0a5

+ def test_candle_int_4():

+ c = Candle(1, 4, 0, 3)
+ g = CandleStickGraph([cl, 4)
+ drawn_string = g.draw(False)

- lines = drawn_string.split("\n")

- first_candle = [line[9] for line in lines[1:-1]]
+ lines = drawn_string.split("\n")
+ first_candle = [line[9] for line in lines[1:-1]]

- self.assertEqual(CandleStickGraph.SYMBOL_STICK, first_candle[0])
- self.assertEqual(CandleStickGraph.SYMBOL_CANDLE, first_candle[1])
- self.assertEqual(CandleStickGraph.SYMBOL_CANDLE, first_candle[2])
- self.assertEqual(CandleStickGraph.SYMBOL_STICK, first_candle[3])
e assert CandleStickGraph.SYMBOL_STICK == first_candle[0]
+ assert CandleStickGraph.SYMBOL_CANDLE == first_candle[1]
+ assert CandleStickGraph.SYMBOL_CANDLE == first_candle[2]
+ assert CandleStickGraph.SYMBOL_STICK == first_candle[3]

Fig. 1: Migration from unittest to pytest (Termgraph).

A migration that involves setups and teardowns may be
harder to achieve because there is no direct mapping between
unittest and pytest. For example, in project pyvim, the unittest
setUp method is split into four pytest fixture functions.? To
facilitate the migration process, pytest can also run unittest
tests, meaning that Python test suites can have both testing
frameworks simultaneously. Consequently, the migration can
happen gradually over time. However, there are also draw-
backs: the migration process can be time-consuming and take
a long time [4]. In this context, projects would benefit from
automated solutions to support the migration process.

In this paper, we propose TestMigrationsInPy, a dataset
of test migrations from unittest to pytest. TestMigrationsInPy
contains 923 real-world migrations performed by developers.
Our dataset construction has two major steps: (1) we au-
tomatically detect commits with migrations from unittest to
pytest, and (2) we manually inspect the migration commits
to identify isolated migrations. We envision the following
usages for TestMigrationsInPy. First, future research proposing
novel solutions to migrate frameworks in Python can rely
on TestMigrationsInPy as a ground truth. Second, as Test-
MigrationsInPy also includes information about the migration
type (e.g., changes in assertions or fixtures), our dataset
enables novel solutions to be verified effectively, from simpler
assertion migrations to more complex fixture migrations.

Zhttps://github.com/prompt-toolkit/pyvim/commit/7e 1¢7bfb505cefbad68

Originality: To our knowledge, this is the first dataset in
the context of testing framework migration. Particularly, we
focus on a highly relevant migration in the Python ecosystem:
unittest to pytest [4].

Data Availability: TestMigrationsInPy is publicly available at:
https://github.com/altinoalvesjunior/TestMigrationsInPy.

II. DATASET CONSTRUCTION

Our dataset construction has two major steps. First, we
automatically detect commits with migrations from unittest
to pytest (Section II-A). Second, we manually inspected the
migration commits to identify isolated migrations, that is,
migrations that simply replace unittest by pytest (Section II-B).

A. Detecting Migrations from Unittest to Pytest

We rely on the migration detection tool proposed by Bar-
bosa and Hora [4] to detect systems that migrated from unittest
to pytest. We adopt this tool because it has a precision and
recall of 100% in detecting migrations. The tool classifies
the system as migrated (or as is migrating) when it has at
least one migration commit. A migration commit is a commit
that explicitly migrates code from unittest to pytest. To detect
migration commits, it assesses the version history of the
system with the support of PyDriller [5]. For a given system,
it iterates on its commits and analyzes the removed and added
lines of code per commit. A commit is a migration commit if
at least one of the following migration types is true [4]:

1) Assert migration: the commit removes unittest
self.assert« and adds pytest assert statements.

2) Fixture migration: the commit removes unittest setup-
s/teardowns, and adds pytest fixtures.

3) Import migration: the commit removes import
unittest and adds import pytest.

4) SKip migration: the commit removes unittest test skips
and adds pytest test skips.

5) Expected failure migration: the commit removes
unittest expected failure and adds pytest expected failure.

B. Detecting Isolated Migrations

The dataset is built based on the manual analysis of migra-
tion commits collected in the previous step. It is important
to notice that a migration commit may have one or more
migrations from unittest to pytest. However, it is well-known
that commis may include unrelated (i.e., tangled) changes [6],
e.g., it may perform migration and add/remove/update asser-
tions. To avoid this problem, we manually detect isolated
migrations, that is, migrations that simply replace unittest by
pytest, and no other unrelated changes are involved. Moreover,
to avoid noise caused by large commits, we filter commits that
modified more than 5 file tests.

III. DATASET DESCRIPTION

Our dataset has been curated from the test suites of 100
highly popular Python software systems. The 100 selected
systems come from our study that empirically analyzed the
migration from unittest to pytest [4]. It includes systems

that are broadly adopted worldwide, such as Pandas, Flask,
Requests, Cookiecutter, Aiohttp, Ansible, to name a few.

First, we executed the migration detection tool (as described
in Section II-A) in the 100 selected projects and detected 690
migration commits in 37 projects. Of the 690 migration com-
mits, we manually detected 923 isolated migrations (described
in Section II-B), which were used to create our dataset. Thus,
TestMigrationsInPy contains 923 real-world migrations from
unittest to pytest.

Dataset Structure: To facilitate navigation in our dataset,
we organized it as a repository in GitHub. Each project has
a list of migration commits. Each migration commit has a
list of isolated migrations and their respective code (located
in folder diff) and a migration summary (located in file
output.info):

e Migration code (diff): contains the migrations of a
commit; each migration includes the test code before
(with unittest) and after (with pytest) the migration.

e Migration summary (output . info): contains the com-
mit hash, the number of changed files, the number of
migrations in the commit, and type. The “type” attribute
includes information about the migration type, for ex-
ample, whether it changes assertions or fixtures (see an
example in the next section).

IV. DATASET EXAMPLES

Migrations from unittest to pytest do not have the same level
of difficulty. For example, migrating assertions may be simple
because one only needs to replace the unittest assertions with
pytest ones and adapt the data being compared. In contrast,
a migration that replaces unittest setups/teardowns by pytest
fixtures may be harder to achieve because there is no direct
mapping. Next, we present two examples to illustrate such
scenarios.

A. Example 1: Simple Migration of Assertions

Project Saleor has 1 migration commit.* Such migration
commit has 4 migrations, as summarized in its diff>
and detailed in output.info® (see Figure 2). Note that
the “type” attribute informs us that these migrations only
involve assertion changes. For instance, migration #1 mi-
grates test test_facebook_login_url from unittest’ to
pytest,® as detailed in Figure 3. In this case, the unittest
self.assert* statements are replaced by the pytest
assert ones. Notice that it is needed to adapt the data be-
ing compared, for instance, self.assertEquals (func,

3The complete list of systems can be found in the original dataset: https:
//doi.org/10.5281/zenodo0.5594254.

4List of migration commits in Saleor: https://github.com/altinoalvesjunior/
TestMigrationsInPy/tree/main/projects/saleor

SMigration code (Saleor, commit #1): https://github.com/altinoalvesjunior/
TestMigrationsInPy/tree/main/projects/saleor/1/diff

®Migration ~summary (Saleor, commit #1I): https:/github.com/
altinoalvesjunior/TestMigrationsInPy/blob/main/projects/saleor/1/output.info

TTest before: https://github.com/altinoalvesjunior/TestMigrationsInPy/blob/
main/projects/saleor/1/diff/mig1-before-test_registration.py

8Test after: https://github.com/altinoalvesjunior/TestMigrationsInPy/blob/
main/projects/saleor/1/diff/mig1-after-test_registration.py

oauth_callback) is replaced by assert func is
oauth_callback. Other changes would be required de-
pending on the assertion being used in unittest. For instance,
self.assertIn(a,b) should be replaced by assert a
in b, and self.assertIsInstance (a,b) should be
replaced by assert isinstance(a, b),toname a few.

“commit_hash": "d629135f843de17bad6dee176816ed6d767d5Ace",

“commit_link": "https://github.com/mirumee/saleor/commit/d629135f843de17bad6deel176816ed6d76fd54ce",
"testFilesChanged": 4

"testFilesChangedwithMigrations": 1

“filesWithMigration": ["saleor/registration/test_registration.py"],

“type": ["assert", "testcase"],

“number0fMigration”: 4

“Nou s wN R

Fig. 2: Example of output.info file (Saleor, commit #1).

30 class LoginUrlsTestCase(TestCase):

31 """Tests login url generation."""

32

33 def test_facebook_login_url(self):

34 """Facebook login url is properly generated"""

35 facebook_client = FacebookClient(local_host="'localhost"')
36 facebook_login_url = URL(facebook_client.get_login_uri())
37 query = facebook_login_url.query_params()

38 callback_url = URL(query['redirect_uri'][0])

39 func, _args, kwargs = resolve(callback_url.path())

40 self.assertEquals(func, oauth_callback)

41 self.assertEquals(kwargs['service'], FACEBOOK

42 self.assertEqual(query['scope']l[0], FacebookClient.scope)
43 self.assertEqual(query['client_id']1[0], str(FacebookClient.client_id)

(a) Test code before the migration (with unittest).

30 def test_facebook_login_url()

31 facebook_client = FacebookClient(local_host="'localhost')

32 facebook_login_url = URL(facebook_client.get_login_uri())

33 query = facebook_login_url.query_params()

34 callback_url = URL(query['redirect_uri'][0])

35 func, _args, kwargs = resolve(callback_url.path())

36 assert func is oauth_callback

37 assert kwargs(['service'] == FACEBOOK

38 assert query['scope'][@] == FacebookClient.scope

39 assert query['client_id'][@] == str(FacebookClient.client_id)

(b) Test code after the migration (with pytest).

Fig. 3: Example of migration of asserts (Saleor, commit #I,
migration #1)

B. Example 2: Complex Migration of Fixtures and Assertions

Project Dash has 4 migration commits.” Migration com-
mit #1 has 9 migrations, as presented in its diff!'" and
summarized in its output.info!l (see Figure 4). Notice
that the “type” attribute shows that the migration involves
both assertion and fixture changes. As an example, migration
#4 migrates a setup and a test from unittest'> to pytest,'
as detailed in Figure 5. In this case, there are three major
changes. First, the unittest test class TestConfigs (with

9List of migration commits in Dash: https:/github.com/altinoalvesjunior/
TestMigrationsInPy/tree/main/projects/dash

10Migration code (Dash, commit #1): https://github.com/altinoalvesjunior/
TestMigrationsInPy/tree/main/projects/dash/1/diff

"Migration ~ summary (Dash, commit #1): https:/github.com/
altinoalvesjunior/TestMigrationsInPy/blob/main/projects/dash/1/output.info

12Test before: https://github.com/altinoalvesjunior/TestMigrationsInPy/
blob/main/projects/dash/1/diff/mig4-before-test_configs.py

BTest after: https://github.com/altinoalvesjunior/TestMigrationsInPy/blob/
main/projects/dash/1/diff/mig4- after-test_configs.py

inheritance to TestCase) is removed, as it is not needed
in pytest. Second, the unittest setUp method is replaced
by the pytest fixture empty_environ, which is annotated
with @pytest.fixture. Third, the unittest test method
test_pathname_prefix_from environ_app_name
is replaced by the pytest test function with the same
name. The new pytest test function receives the fixture
empty_environ as a parameter. When pytest runs a test,
it looks at the parameters in that test function’s signature
and then searches for fixtures with the same names as those
parameters [2], [4]. Once pytest finds them, it runs those
fixtures, captures what they returned, and passes those values
into the test function as arguments [2], [4].

As a more challenging migration of fixtures, in project
pyvim, the unittest setUp method is split into four pytest
fixture functions: prompt_buffer, editor_buffer,
window, and tab_page.14

“commit_hash": "bfe4e9f6f16da07990fe31abbe5956162b3b0fae",

"commit_link": "https://github.com/plotly/dash/commit/bfe4e9df6f16da@7990fe31abbe5956162b3bofae",
"testFilesChanged": 1,

“testFilesChangedWithMigrations": 1,

“filesWithMigration": ["tests/unit/test_configs.py"],

“type": ["assert", "fixture", “testcase", “add Param"],

“numberOfMigration": 9

N U s WwN R

Fig. 4: Example of output.info file (Dash, commit #1).

14 class TestConfigs(unittest.TestCase):

15

16 def setUp(self):

17 for k in DASH_ENV_VARS.keys():

18 if k in os.environ:

19 os.environ.pop(k)

20

21 def test_pathname_prefix_from_environ_app_name(self):
22 os.environ['DASH_APP_NAME'] = 'my-dash-app'
23 _, routes, req = pathname_configs()

24 self.assertEqual('/my-dash-app/', req)

25 self.assertEqual('/"', routes)

(a) Test code before the migration (with unittest).

16 @pytest.fixture

17 def empty_environ():

18 for k in DASH_ENV_VARS.keys():

19 if k in os.environ:

20 os.environ.pop(k)

21

22 def test_pathname_prefix_from_environ_app_name(empty_environ):
23 os.environ["DASH_APP_NAME"] = "my-dash-app"
24 _, routes, req = pathname_configs()

25 assert req == "/my-dash-app/"

26 assert routes == "/"

(b) Test code after the migration (with pytest).

Fig. 5: Example of migration fixtures and assertions (Dash,
commit #1, migration #4)

4https://github.com/prompt- toolkit/pyvim/commit/7e1c¢7bfb505cefba468

V. DATASET USAGE: SUPPORT THE DEVELOPMENT OF
NOVEL FRAMEWORK MIGRATION SOLUTIONS

Multiple studies explore migration, both empirically [4], [7]
and by proposing automatic migration solutions [6], [8]-[11].
For example, Barbosa and Hora empirically explored how
developers migrate Python tests from unittest to pytest [4]. In a
related line, Martinez and Mateus studied the migration from
Java to Kotlin [7], [12]. Recently, Large Language Models
(LLMs) have been adopted in multiple software engineering
tasks [8], [13]-[21], including code migration [8], [22]. Di
Rocco et al. proposed DeepMig, a transformer-based approach
to support coupled library and code migrations in Java [22].
Almeida et al. provided an initial study to explore automatic
library migration using LLMs [8]. Both LLM-based migrations
presented promising results [8], [22].

Our dataset contains real-world migrations performed by
developers from the testing framework unittest to pytest.
We manually verified the migrations to reduce the possible
noise caused by unrelated, tangled changes [6]. Therefore, we
foresee the following usages for TestMigrationsInPy.

-

Usage 1: Future research proposing novel solutions
to migrate frameworks in Python can rely on Test-
MigrationsInPy as a ground truth. For example, to
explore migration with LLMs, the test code before
(with unittest) can be migrated with such models, and
the test code after (with pytest) can be used as the
ground truth for the LLM-migrated test.

Our dataset also includes information about the migration
type, such as changes in assertions or fixtures. As migrations
of fixtures are more complex than migrations of assertions,
they can be classified according to their difficulty level.

Usage 2: TestMigrationsInPy enables novel migration
solutions to be verified effectively, from simpler asser-
tion migrations to more complex fixture migrations.

In this context, we have used GPT-40 and TestMigra-
tionsInPy to migrate Python tests from unittest to pytest.
Overall, our initial results show that GPT-40 can be used
to accelerate the migration process from unittest to pytest.
However, we observed that developers should pay attention
to fixing minor wrong updates that the model can perform,
particularly when migrating fixtures.

VI. LIMITATIONS

Our dataset has been curated from the test suites of 100
highly popular Python software systems [4]. Despite these
systems being relevant and real-world, they do not repre-
sent the entire Python ecosystem. Particularly, less popular
projects may adopt migration practices that are uncommon
in more widely-used projects. Further versions of the dataset
can include migrations from more projects, allowing a more
comprehensive understanding of the migration landscape.

VII. RELATED WORK
A. Code Migration

Framework evolution and migration are research topics
largely explored by the literature in multiple ecosystems [4],
[23]-[35]. In the context of testing framework migration, Bar-
bosa and Hora empirically explored how developers migrate
Python tests from unittest to pytest [4]. In many cases, the
migration was not simple, taking a long period to conclude
or never concluded at all. In a related research line, Martinez
and Mateus studied the migration from Java to Kotlin [7], [12].
Kotlin is interoperable with Java, thus, developers can migrate
gradually. Overall, the migration occurred to access features
only available in Kotlin and to obtain safer code.

Recently, LLMs have been adopted in multiple software en-
gineering tasks, including generating tests, refactoring, fixing
bugs, and supporting code review [8], [13]-[22]. Notably, it
has demonstrated significant results in code generation [13],
[36]. In this context, Di Rocco et al. proposed DeepMig, a
transformer-based approach to support coupled library and
code migrations in Java [22]. The research presents promising
results, showing that DeepMig can recommend both libraries
and code; in several projects with a perfect match. Almeida et
al. provided an initial study to explore automatic library mi-
gration using LLMs [8]. With GPT-40, the authors migrated a
client application to a newer version of SQLAlchemy, a Python
ORM library. TestMigrationsInPy can support the development
of novel solutions to migrate frameworks in Python.

B. Datasets to Support Testing Research

Multiple datasets have been proposed to support software
testing research [37]-[41]. For example, TestDossier is a
dataset of tested values automatically extracted from the
execution of Python tests [37]. Methods2Test is a dataset
of focal methods mapped to test cases extracted from Java
projects [38]. TestRoutes is a test-to-code dataset containing
traceability information for Java test cases [39]. Jbench is a
dataset of data races for concurrency testing [40]. TestMigra-
tionsInPy contributes to the software testing literature with a
novel dataset to support test migration research.

VIII. CONCLUSION

We proposed TestMigrationsInPy, a dataset of test migra-

tions from unittest to pytest. TestMigrationsInPy contains real-
world migrations performed by developers.
Further Improvements: First, our dataset can include less
popular projects to have a better overview of the migration
landscape. Second, the migrations can have a more specific
classification for the unittest test code, for instance, with spe-
cific used assertions and fixtures (e.g., setUp, setUpClass,
tearDown, etc.). Third, the pytest test code can have a
more specific classification of the pytest features used in the
migrated test (e.g., parametrized tests).

ACKNOWLEDGMENTS

This research is CAPES, CNPq, and

FAPEMIG.

supported by

[1]
[2]
[3]

[5]

[6]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

Unittest, https://docs.python.org/3/library/unittest.html, October, 2024.
Pytest, https://docs.pytest.org, October, 2024.

Python Developers Survey 2023 Results, https://lp.jetbrains.com/python-
developers-survey-2023/#frameworks-and-libraries, October, 2024.

L. Barbosa and A. Hora, “How and why developers migrate python
tests,” in International Conference on Software Analysis, Evolution and
Reengineering, 2022, pp. 538-548.

D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework
for mining software repositories,” in Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of
Software Engineering, 2018, pp. 908-911.

M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse, “Un-
tangling fine-grained code changes,” in International Conference on
Software Analysis, Evolution, and Reengineering. 1EEE, 2015, pp.
341-350.

M. Martinez and B. G. Mateus, “How and Why did developers migrate
Android Applications from Java to Kotlin? A study based on code anal-
ysis and interviews with developers,” arXiv preprint arXiv:2003.12730,
2020.

A. Almeida, L. Xavier, and M. T. Valente, “Automatic library migration
using large language models: First results,” in International Symposium
on Empirical Software Engineering and Measurement, 2024, pp. 1-7.
A. Hora and M. T. Valente, “apiwave: Keeping track of API popularity
and migration,” in International Conference on Software Mintenance
and Evolution, 2015, pp. 321-323.

H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
api mapping for language migration,” in International Conference on
Software Engineering, 2010, pp. 195-204.

H. D. Phan, A. T. Nguyen, T. D. Nguyen, and T. N. Nguyen, “Statistical
migration of api usages,” in International Conference on Software
Engineering Companion. 1EEE, 2017, pp. 47-50.

M. Martinez and B. G. Mateus, “Why did developers migrate Android
applications from Java to Kotlin?” IEEE Transactions on Software
Engineering, vol. 48, no. 11, pp. 4521-4534, 2021.

A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering:
Survey and open problems,” arXiv preprint arXiv:2310.03533, 2023.
M. Monteiro, B. C. Branco, S. Silvestre, G. Avelino, and M. T. Valente,
“End-to-end software construction using chatgpt: An experience report,”
arXiv preprint arXiv:2310.14843, 2023.

J. T. Liang, C. Badea, C. Bird, R. DeLine, D. Ford, N. Forsgren, and
T. Zimmermann, “Can gpt-4 replicate empirical software engineering
research?” arXiv preprint arXiv:2310.01727, 2023.

M. Tufano, S. Chandel, A. Agarwal, N. Sundaresan, and C. Clement,
“Predicting code coverage without execution,” arXiv preprint
arXiv:2307.13383, 2023.

R. E. Georgsen, “Beyond code assistance with gpt-4: Leveraging github
copilot and chatgpt for peer review in vse engineering,” EasyChair, Tech.
Rep., 2023.

X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” ACM Transactions on Software
Engineering and Methodology, 2023.

A. Hora, “Predicting test results without execution,” in International
Conference on the Foundations of Software Engineering, 2024, pp. 542—
546.

M. Schifer, S. Nadi, A. Eghbali, and F. Tip, “An empirical evaluation of
using large language models for automated unit test generation,” /EEE
Transactions on Software Engineering, 2023.

N. Alshahwan, J. Chheda, A. Finogenova, B. Gokkaya, M. Harman,
I. Harper, A. Marginean, S. Sengupta, and E. Wang, “Automated unit
test improvement using large language models at meta,” in International
Conference on the Foundations of Software Engineering, 2024, pp. 185—
196.

J. Di Rocco, P. T. Nguyen, C. Di Sipio, R. Rubei, D. Di Ruscio, and
M. Di Penta, “Deepmig: A transformer-based approach to support cou-
pled library and code migrations,” Information and Software Technology,
vol. 177, p. 107588, 2025.

M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, “A systematic review
of api evolution literature,” ACM Computing Surveys (CSUR), vol. 54,
no. 8, pp. 1-36, 2021.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]
(371

(38]

[39]

[40]

[41]

J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated Python
library APIs are (not) handled,” in Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 233-244.

L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact
analysis of api breaking changes: A large-scale study,” in Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2017, pp. 138-147.

L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Character-
ising deprecated android apis,” in International Conference on Mining
Software Repositories (MSR), 2018, pp. 254-264.

A. Brito, M. T. Valente, L. Xavier, and A. Hora, “You broke my code:
understanding the motivations for breaking changes in apis,” Empirical
Software Engineering, vol. 25, pp. 1458-1492, 2020.

A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T.
Valente, “How do developers react to api evolution? the pharo ecosys-
tem case,” in International Conference on Software Maintenance and
Evolution. 1EEE, 2015, pp. 251-260.

G. Brito, A. Hora, M. T. Valente, and R. Robbes, “On the use of
replacement messages in api deprecation: An empirical study,” Journal
of Systems and Software, vol. 137, pp. 306-321, 2018.

R. Robbes, M. Lungu, and D. Réthlisberger, “How do developers react
to api deprecation? the case of a smalltalk ecosystem,” in International
Symposium on the Foundations of Software Engineering, 2012, pp. 1-11.

J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service api
evolution affect clients?” in International Conference on Web Services.
IEEE, 2013, pp. 300-307.

A. A. Sawant, R. Robbes, and A. Bacchelli, “To react, or not to react:
Patterns of reaction to api deprecation,” Empirical Software Engineering,
vol. 24, pp. 3824-3870, 2019.

A. A. Sawant, G. Huang, G. Vilen, S. Stojkovski, and A. Bacchelli,
“Why are features deprecated? an investigation into the motivation be-
hind deprecation,” in International Conference on Software Maintenance
and Evolution. 1EEE, 2018, pp. 13-24.

R. Nascimento, E. Figueiredo, and A. Hora, “JavaScript API deprecation
landscape: A survey and mining study,” IEEE Software, vol. 39, no. 3,
pp. 96-105, 2021.

B. A. Malloy and J. F. Power, “An empirical analysis of the transition
from python 2 to python 3,” Empirical Software Engineering, vol. 24,
pp. 751778, 2019.

OpenAl, “Gpt-4 technical report,” 2023.

A. Hora, “Testdossier: A dataset of tested values automatically extracted
from test execution,” in International Conference on Mining Software
Repositories. 1EEE, 2024, pp. 299-303.

M. Tufano, S. K. Deng, N. Sundaresan, and A. Svyatkovskiy, “Meth-
ods2test: A dataset of focal methods mapped to test cases,” in Interna-
tional Conference on Mining Software Repositories, 2022, pp. 299-303.
A. Kicsi, L. Vidacs, and T. Gyiméthy, “Testroutes: A manually curated
method level dataset for test-to-code traceability,” in International Con-

ference on Mining Software Repositories, 2020, pp. 593-597.

J. Gao, X. Yang, Y. Jiang, H. Liu, W. Ying, and X. Zhang, “Jbench: a
dataset of data races for concurrency testing,” in International Confer-
ence on Mining Software Repositories, 2018, pp. 6-9.

E. Bui and H. Rocha, “Snapshot testing dataset,” in International
Conference on Mining Software Repositories. 1EEE, 2023, pp. 558-562.

